Package: CorBin (via r-universe)

September 2, 2024

Type Package

Title Generate High-Dimensional Binary Data with Correlation Structures

Version 1.0.0

Author Wei Jiang [aut], Shuang Song [aut, cre], Lin Hou [aut] and Hongyu Zhao [aut]

Maintainer Shuang Song <song-s19@mails.tsinghua.edu.cn>

Description We design algorithms with linear time complexity with respect to the dimension for three commonly studied correlation structures, including exchangeable, decaying-product and K-dependent correlation structures, and extend the algorithms to generate binary data of general non-negative correlation matrices with quadratic time complexity. Jiang, W., Song, S., Hou, L. and Zhao, H. ``A set of efficient methods to generate high-dimensional binary data with specified correlation structures." The American Statistician. See <doi:10.1080/00031305.2020.1816213> for a detailed presentation

of the method.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

NeedsCompilation no

Date/Publication 2020-11-14 09:20:02 UTC

Repository https://shuangsong0110.r-universe.dev

RemoteUrl https://github.com/cran/CorBin

RemoteRef HEAD

RemoteSha 1cf63d450f12cff000e49474c825d227e00fab70

2 cBern

Contents

Index																		7
	rhoMaxDCP rhoMaxEx .																	
	rhoMax1dep																	
	cBernEx																	
	cBern1dep . cBernDCP .																	
	$cBern \ \dots \ .$																	

Description

The main function of our package, through which we can simulate correlated binary data under different settings.

Usage

```
cBern(n, p, rho, type, k = NULL)
```

Arguments

n	number of observations
р	the vector of marginal probabilities with dimension m
rho	For the first three types, rho is either a non-negative value indecating the shared correlation coefficient or and m-1 vector indicating the correlation coefficients between adjacent variables. For the general case, rho should be a list, the i-th element of which specifies the coefficients on the i-th minor diagnal.
type	including 4 types. type="exchange" type="DCP" type="1-dependent" type="General"
k	(for 'General' use only). The number of layers setting for k-dependent structure. k = m -1 for the general case.

Value

an n*p matrix of binary data

References

Jiang, W., Song, S., Hou, L. and Zhao, H. A set of efficient methods to generate high-dimensional binary data with specified correlation structures. *The American Statistician*. DOI:10.1080/00031305.2020.1816213

cBern1dep 3

See Also

```
cBernEx, cBernDCP, cBern1dep
```

Examples

```
X <- cBern(10, rep(0.5,3), 0.5, type="exchange")
X <- cBern(10, rep(0.5,3), c(0.2,0.2), type="DCP")
X <- cBern(5, c(0.4,0.5,0.6), c(0.2,0.3), type="1-dependent")
rho <- list()
rho[[1]] <- c(0.2,0.3)
rho[[2]] <- 0.1
X <- cBern(2, c(0.7,0.8,0.9),rho=rho,type="General", k=2)</pre>
```

cBern1dep

Generate binary data with 1-dependent correlated structure

Description

Equivalent to cBern(n, p, rho, type="1-dependent")

Usage

```
cBern1dep(n, p, rho)
```

Arguments

n number of observations

p the vector of marginal probabilities with dimension m

rho either a non-negative value indecating the shared correlation coefficient or and m-1 vector indicating the correlation coefficients between adjacent variables.

Value

```
an n*p matrix of binary data
```

Examples

```
X \leftarrow cBern1dep(5, c(0.4, 0.5, 0.6), c(0.2, 0.3))
```

4 cBernEx

cBernDCP

Generate binary data with decaying-product correlated structure

Description

```
Equivalent to cBern(n, p, rho, type="DCP")
```

Usage

```
cBernDCP(n, p, rho)
```

Arguments

n number of observations

p the vector of marginal probabilities with dimension m

rho either a non-negative value indecating the shared correlation coefficient or and

m-1 vector indicating the correlation coefficients between adjacent variables.

Value

an n*p matrix of binary data

Examples

```
X \leftarrow cBernDCP(10, rep(0.5,3), c(0.2,0.2))
```

cBernEx

Generate binary data with exchangeable correlated structure

Description

```
Equivalent to cBern(n, p, rho, type="exchange")
```

Usage

```
cBernEx(n, p, rho)
```

Arguments

n number of observations

p the vector of marginal probabilities with dimension m

rho a non-negative value indecating the shared correlation coefficient

Value

```
an n*p matrix of binary data
```

rhoMax1dep 5

Examples

```
X \leftarrow cBernEx(10, rep(0.5,3), 0.5)
```

rhoMax1dep

To calculate the maximal allowed correlations max for using cBern1dep to generate binary data with 1-dependent structure

Description

To calculate the maximal allowed correlations max for using cBern1dep to generate binary data with 1-dependent structure

Usage

```
rhoMax1dep(p)
```

Arguments

р

the vector of marginal probabilities with dimension m

Value

an (m-1)-dimensional vector rho, which is the maximum the correlation between the adjacent variables

rhoMaxDCP

For calculating the maximal allowed correlations max for binary data with decaying-product structure.

Description

For calculating the maximal allowed correlations max for binary data with decaying-product structure.

Usage

```
rhoMaxDCP(p)
```

Arguments

р

marginal probabilities

Value

an (m-1)-dimensional vector rho, which is the maximum the correlation between the adjacent variables

6 rhoMaxEx

rhoMaxEx	For calculating the maximal allowed correlation coefficient for binary data with exchangeable structure.

Description

For calculating the maximal allowed correlation coefficient for binary data with exchangeable structure.

Usage

rhoMaxEx(p)

Arguments

p the vector of marginal probabilities with dimension m

Value

the maximal allowed correlation coefficient

Index

```
cBern, 2
cBern1dep, 3, 3
cBernDCP, 3, 4
cBernEx, 3, 4
rhoMax1dep, 5
rhoMaxDCP, 5
rhoMaxEx, 6
```