Package: EBPRS 2.1.0

EBPRS: Derive Polygenic Risk Score Based on Emprical Bayes Theory

EB-PRS is a novel method that leverages information for effect sizes across all the markers to improve the prediction accuracy. No parameter tuning is needed in the method, and no external information is needed. This R-package provides the calculation of polygenic risk scores from the given training summary statistics and testing data. We can use EB-PRS to extract main information, estimate Empirical Bayes parameters, derive polygenic risk scores for each individual in testing data, and evaluate the PRS according to AUC and predictive r2. See Song et al. (2020) <doi:10.1371/journal.pcbi.1007565> for a detailed presentation of the method.

Authors:Shuang Song [aut, cre], Wei Jiang [aut], Lin Hou [aut] and Hongyu Zhao [aut]

EBPRS_2.1.0.tar.gz
EBPRS_2.1.0.zip(r-4.5)EBPRS_2.1.0.zip(r-4.4)EBPRS_2.1.0.zip(r-4.3)
EBPRS_2.1.0.tgz(r-4.4-any)EBPRS_2.1.0.tgz(r-4.3-any)
EBPRS_2.1.0.tar.gz(r-4.5-noble)EBPRS_2.1.0.tar.gz(r-4.4-noble)
EBPRS_2.1.0.tgz(r-4.4-emscripten)EBPRS_2.1.0.tgz(r-4.3-emscripten)
EBPRS.pdf |EBPRS.html
EBPRS/json (API)

# Install 'EBPRS' in R:
install.packages('EBPRS', repos = c('https://shuangsong0110.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • traindat - Example data for training set

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.30 score 2 stars 10 scripts 302 downloads 4 exports 9 dependencies

Last updated 4 years agofrom:0873b428e9. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 27 2024
R-4.5-winOKOct 27 2024
R-4.5-linuxOKOct 27 2024
R-4.4-winOKOct 27 2024
R-4.4-macOKOct 27 2024
R-4.3-winOKOct 27 2024
R-4.3-macOKOct 27 2024

Exports:EBPRSEBPRSpackageread_plinkvalidate

Dependencies:BEDMatrixbitopscaToolscrochetdata.tablegplotsgtoolsKernSmoothROCR